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1 Introduction

Finite Element Analysis is a powerful modelling tool for numerically solving various en-

gineering problems. In this report, a MATLAB programme for FEM will be described,

verified and applied to a cylindrical flange and pipe. The programme has been developed

to analyse the effects of various physical conditions on the temperature, displacement

and stress distributions within a component.

2 Description of Algorithms

The general method for using finite elements analysis is illustrated in Figure 1, where

A and B represent the stiffness matrix and force vector respectively. For each element,

the coordinates corresponding to its nodes are used to calculate the Jacobian and the

gradient of the local shape function. These are used to find the local stiffness matrix, Ae
ij

and local nodal force vector, Be
i , which are used to assemble the global matrices A and B

[1]. To account for different materials within the element, we must identify which elements

are part of the tube or the flange from the mesh, so that the correct material properties

can be used in calculations. The elements corresponding to each material are different

element sets within the mesh.

2.1 Steady-state heat conduction problem

The objective is to create an FEM programme capable of finding the steady-state tem-

perature distribution. The temperature at each node can be calculated from AU = B,

solving for U , where A and B have been found by using the heat equation in a finite ele-

ment programme. Dirichlet conditions may be used to apply temperatures at the nodes

of boundaries.

2.2 Thermoelastic problem

Finding the displacement for the thermoelastic problem requires the temperature at each

node, which is obtained above. We are simulating the interior of a very thick component

in a single plane and are therefore use coefficients for plane strain in our calculations for

stress at the nodes. The FEM system is constructed similarly to temperature, therefore
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also follows the steps shown in Figure 1. However, note that there are two displacements

associated with each node: x and y, therefore our local stiffness matrix is of the size

6x6 as there are 3 nodes for each element. This means our global A matrix will be a

2n × 2n matrix (where n is the number of nodes in the mesh) and our global B matrix

will have dimensions 2n × 1. Neumann boundary conditions can be used to apply pres-

sures at boundaries and Dirichlet boundary conditions can be applied to fix the node

displacements at a certain value.

2.3 Stress

The stress function uses averaging over neighbouring elements to calculate stress. It has

5 inputs: the mesh, material properties, the reference temperature and the temperature

and displacement outputs from the respective functions. Hooke’s law is used to calculate

stress from the strain, calculated from the thermoelastic problem. Iterating through each

element of the Jacobian, the gradient of the local shape function and relevant coefficients

are found and used with Hooke’s law to find the stress at each node. The stress of the

element is calculated to be the sum of the stresses at each node. The stress at each

node is now found by summing the stresses from all adjacent elements and dividing by

the number of adjacent elements.

2.4 Neumann boundary condition

The Neumann boundary is also shown in Figure 1. It changes the values of the B matrix

by looping through each boundary. For each node on the boundary, find the x and y coor-

dinates and use these to calculate the Jacobian and the normal vector to the edge. The

traction vector can be found by multiplying the normal vector with the boundary condition

applied (in the displacement case, this is the pressure). A local nodal force vector Be
i is

found using the traction and Jacobian, which is added to the global force vector B.

2.5 Dirichlet boundary condition

The Dirichlet boundary conditions specify the values the solutions should take at the

nodes along a boundary. It is applied once matrices A and B are fully constructed and

changes both matrices.
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Loop through boundaries

Loop through edge segments

Find x and y coordinates 
from each node on the 
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the normal vector and the 

traction vector
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boundary 
conditions

Find the local B matrix 
(traction vector multiplied 

by the Jacobian)

Add the local B vector to 
the global B vector

Function input: 
mesh, B vector, 

boundary 
conditions
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B vector 

Initialise local and global 
matrices for stiffness and 

force matrices

Apply Dirichlet boundary 
conditions

Loop through elements

Construct local matrices 
Ae and Be

Construct global matrices 
A and B by adding 
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Output: Matrices 
A and B

Function input: 
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properties

Calculate the gradient of 
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Find 
Displacement/ 
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Calculate constants, the 
Jacobian of the 

transformation and its 
inverse

Figure 2.1: Flow chart for developing a finite element programme
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3 Verifying the Code with Analytical Predictions

The FEM programme has been verified by comparing its results with analytical predic-

tions. A simple, rectangular, 6 node, 4 element mesh was created, as illustrated in the

following examples. In the first 5 tests, Dirichlet Boundary were used to set zero x dis-

placement on the left side and zero y displacement on the bottom side. The ambient

temperature in each of the tests is set to 20°. The block has dimensions 2x1 metres

and was also used for debugging the programme, by comparing its results with an FEM

system calculated by hand.

3.1 Testing the temperature distribution

To test the code responsible for finding temperature, Dirichlet boundary conditions were

used to set a temperature of 10° and 100° to the left and right sides respectively. Fig-

ure 3.1 shows a uniform temperature, as expected. The colour in the centre of the block

is 55°, which is midway between the two boundary values.
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Figure 3.1: Block with temperature gradient

3.2 Applying a displacement to one side

Figure 3.2 shows a block with a displacement of 5m applied to the right side. The block’s

nodes are at ambient temperature. The displacement induces a stress within the element

as follows:
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σxx =
E

(1 + v)(1− 2v)
((1− v)εxx + vεyy)

=
15× 109

(1 + 0.3)(1− 2(0.3))
((1− 0.3)× 5

2
) = 5.048× 1010 (1)

σyy =
E

(1 + v)(1− 2v)
((1− v)εyy + vεxx)

=
15× 109

(1 + 0.3)(1− 2(0.3))
((0.3)× 5

2
) = 2.163× 1010 (2)

0 2 4 6 8

x

0

2

4

y

StressXX

1.26201923076909

1.26201923076915

1.2620192307692

1.26201923076926

1.26201923076931

1.26201923076937
1010

0 2 4 6 8

x

0

2

4

y

StressYY

5.40865384615325

5.40865384615349

5.40865384615373

5.40865384615396

5.4086538461542

5.40865384615444
109

Figure 3.2: Temperature and displacement distributions throughout flange and pipe

3.3 Temperature difference of the block and its surroundings

A temperature of 70° was applied to all nodes of the mesh. Figure 3.3 shows the x and y

displacements of the block due to thermal expansion because of the block’s temperature

difference to the ambient temperature (20°).

ε = (1 + v)α∆T (3)

ε = (1 + 0.3)× 28× 10−6 × 50 = 1.82× 10−3 (4)

ux = ε× l = 1.82× 10−3 × 2 = 3.64× 10−3 m (5)

uy = ε× h = 1.82× 10−3 × 1 = 1.82× 10−3 m (6)

Both the analytical and numerical calculations yield an x displacement of 3.64 × 10−3

m and a y displacement of 1.82 × 10−3 m. Since their solutions align, the programme

correctly uses temperature to calculate displacement.
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Figure 3.3: Applying a temperature difference

3.4 Applying a pressure

The block in Figure 3.4 has been set to 20° (ambient temperature) and a pressure of 1

bar has been applied to the right-hand side. The analytical displacements are consistent

with the programme’s output.

εxx =
1− v2

E
(σxx −

v

1− v
σyy) =

1− 0.32

15× 109
(1× 105) = 6.067× 10−6 (7)

ux = 6.067× 10−6 × 2 = 1.213× 10−5 m (8)

εyy =
1− v2

E
(σyy −

v

1− v
σxx) =

1− 0.32

15× 109

(
− 0.3

1− 0.3
(1× 105)

)
= −2.6× 10−6 (9)

uy = −2.6× 10−6 × 1 = −2.6× 10−6 m (10)

3.5 Applying a temperature and a pressure

Applying the conditions from both 3.3 and 3.4 (temperature difference of 50° of the block

to its surroundings and a pressure of 1 bar) causes the displacements to be a linear sum

of the displacements from the previous cases, as demonstrated in Figure 3.5, as well as

analytically. Displacements vary uniformly across the element.
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Figure 3.4: A pressure of 1 bar applied to the right edge

ux = 3.64× 10−3 − 1.2134× 10−5 = 3.6279× 10−3 m (11)

uy = 1.82× 10−3 + 2.6× 10−6 = 1.8226× 10−3 m (12)
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Figure 3.5: Combined displacements for temperature difference and pressure

3.6 Thermal stress

To test the thermal stress, the entire rectangle has been fixed in Figure 3.6: setting the x

displacements of both vertical sides and the y displacements of both horizontal sides to

zero. The temperature of the rectangle has been set to 70° and the stress in plane strain

can be found as:
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σ = −Eα∆T

1− 2v
= −15× 109 × 28× 10−6 × 50

1− 2× 0.3
= −52.5× 106 Nm−2 (13)
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Figure 3.6: Thermal stresses

4 Flange and Pipe Problem

The tested MATLAB code was applied to a flange and pipe problem using given coarse,

normal and fine meshes. The pipe and flange are subject to boundary conditions of 70°

and 10 bar on the internal surface and 10° and atmospheric pressure on the external

surface. The flange has also been fixed to the wall at two boundaries.

4.1 Steady-state heat conduction programme applied to flange and pipe

Figure 4.1 illustrates the smooth variation of temperature throughout the component from

70° on the inside to 10° on the outside. We have not accounted for convection, meaning

these temperatures have been applied directly to the nodes using the Dirichlet boundary

condition. Each element uses linear interpolation between nodes, however the slight shift

in gradient is caused by the flange and pipe having different thermal conductivities.

4.2 Thermoelastic problem applied to the flange and pipe

For the thermoelastic problem, Dirichlet boundary conditions were applied in the x direc-

tion at the centre as there is no displacement due to symmetry, as well as in the x and y

directions at the fixed edges. Figure 4.1 shows the x and y displacements, which mirror

the boundary conditions. Figure 4.2 shows the variation of the y displacements along

the symmetrical axis. Overall, the flange and pipe are displacing outward, especially in
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the vertical direction, therefore we need to ensure that it is not built adjacent to other

components, as this could cause unexpected stresses.
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Figure 4.1: Temperature and displacement distributions throughout flange and pipe
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Figure 4.2: y displacement along the axis of symmetry

4.3 Stresses throughout the flange and pipe

Figure 4.3 shows the stress distributions throughout the flange. We can see that the

maximum stress is the stress at the bottom of the flange in the x direction (79.7 MPa).

This value is larger than the ultimate failure stress of lead (12 MPa) [2]. To prevent failure,

9



Finite Elements for Coupled Thermo-elastic Problems

we could support the flange and pipe system at the bottom of the flange. Since our model

assumes perfect insulation at the surfaces, neglecting heat transfer with the surroundings,

it likely overestimates the temperature and displacement gradients compared to real-

world conditions. Therefore, these stress predictions account for a worst case scenario.
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Figure 4.3: Stress distribution throughout flange and pipe

5 Possible Improvements

5.1 Different mesh sizes

The times taken to compute the temperature, displacements and stresses is shown in Ta-

ble 1. Different mesh sizes could be combined to minimise the computational time, while

maintaining accuracy since the numerical solution approaches the analytical solution with

more elements. This could be done by starting with a coarse mesh to find elements of

high rates of changes and then applying smaller meshes to only those areas.

Table 1: Time taken to run programme given different meshes
Coarse Mesh Normal Mesh Fine Mesh
0.460788 sec 2.303736 sec 138.595270 sec

5.2 Additional support

To keep the stresses within the flange and pipe to a minimum, an additional support at

the bottom of the flange has been applied by using Dirichlet conditions to set the two

most bottom nodes to zero x and y displacement. However, as shown in Figure 5.1, the
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stress in the x direction has only reduced by a very marginal amount (from 7.9686 × 107

Nm−2 to 7.7090× 107 Nm−2). Therefore, other methods such as using a different material

or altering the pipe’s dimensions may be better.

Figure 5.1: Stress in x direction when flange is supported at the bottom

6 Conclusion

The Finite Element Model introduced in this report has successfully captured the system’s

responses to temperature and pressure variations, as demonstrated by our tests and

analytical solutions. In practice, this FEM code could be used to predict the location

of likely failure in the pipe by finding the area of highest stress. This is useful, as it

allows engineers to add reinforcement to those areas as well as carry out predictive

maintenance.
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